
HYDRODYNAMICS OF A CENTRIFUGAL SPRAYER 
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An asymptotic analysis is made of the flow of a film of an inviscid incompressible 
liquid in a centrifugal sprayer underhigh heads. The conditions under which the 
film turns through an angle ~ along the surface of the sprayer are determined. 

.The swirling ofl streams of liquids and gases iswidely~used in industry as an effective 
means of intensifying heat- and mass-exchangeprocesses.~A centrifugal, sprayer is an example 
of a technical device in which streamswirlingis used [I, 2]. In such adevice the swirled 
stream usually turnsthrough an angle ~/2. The casewhenaswirled high-head stream turns 
through an angle ~ is studiedbelow. The investigation is made under the following 
assumptions. Theliquid is inviscid, incompressible, and weightless. The thickness of the 
liquid layer in the inner channel of the centrifugal sprayer is far less than its radius, 
while the velocity alongthe generating line of the channel is far lower than the velocity 
of rotation of the liquid. The totalpressure of theliqui d is far higher than the static 
pressure in the surrounding space. Inthis case, thefollowingcharacteristic regions of flow 
can be distinguished (Fig. i): region I (~ > y > 0) of rotational--translational flow of the 
liquid film in the inner channel; regionll, in which the llquidfilm turns through an angle 
~/2 along the surface ofthe sprayer in the vicinity ofi(y = 0,:r = ro); in region III, lo- 
cated on the outer surface, the:liquid film turns through another angle ~/2, so that the 
flow turns through a total angle ~. The conditions under which the flow of the liquid film 
proves to be attached are studied in:thepaper. This is important from a practical point of 
view, since a detached film rapidly loses staSility and is broken upby forces of surface 
tension. As a: result:of the=floss of continuity of the liquid:film, the surface of the sprayer 
is not protected from the adverse'action of the externalmedium or overheating. 

The ability of a stream of liquid or gas to bend around a surface is called the Coanda 
effect. Thus, a theory of the Coanda effect for a centrifugal sprayer ispresented here. 

i. We consider the rotational--translational~flow of a layer ~ of aninviscid incompressi- 
ble liquid along the inner cylindrical channel, of radius r0, of a sprayer ~Fig. i). Let the 
thickness of the liquid film bei~<<r0, while the velocity component along the generating 
line is u0<<w0, where w0 is the rotational component of the velocity vector. In the cross 
section y = O, where y is the axis of symmetry of the sprayer, the film turns through an 
angle ~/2. Obviously, such flow is not always possible. If the edgeis sharp, the liquid 
film detaches fromthe surface andbreaks up rather rapidly. Let us try to estimate the 
characteristic size and shape of the sprayer surface in the vicinity of y = 0 and r = r0 (Fig. 
2) providing for the attached turning of the liquid film through anangle ~/2. If we neglect 
the variation of the film thickness 6 as it spreads out, then the following forces act on an 
element Al~A~ of this film with a mass m = Al6~p : 

FlsinO-4-F2-4-AprA~Al  = 0:. (1) 

Here A~ is an element of azimuth angle; Apis the pressure differencebetween the outer and 
inner surfaces of the liquid; FI and F2 are the centrifugal forces determined by the rotational 
and translationalmo~ion of the liquid. We shall neglectthe term allowing for the pressure 
differenceAp, since this force promotes the pressing of the film against the surface y = y(r) 
along which it moves,: and the resulting estimate will be majorant~ for the attached surface 
of the sprayer. 

The values of the centrifugal force depend on the rotational motion, 

F1 "~ mw~/r , (2) 
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Fig. i. Diagram of liquid flow in a centrifugal 
sprayer. 

Fig. 2. Diagram of liquid flow in region II. 

and the longitudinal velocity, 

F2 ~ mu2o/R. (3) 
In accordance with the definition of the radius of curvature R of the surface y(r). 

. . . .  [ (dY71 -'2 1 • d2Y 1 -~ (4) 
R dr  = ~,- -~-r j  J " 

From Eqs. (1)-(4), we get 

r dr +.5 L 1 +  = 0 .  ~-y;- 1 j (5) 

We require that the two terms of Eq. (5) be of the same order. Then we obtain 

Ay ~. At,  r " ,  ro q- Ar, wo ~ uo/]/'Ar/ro. ( 6 )  

We d e s i g n a t e  A : w2oAr/u~ro = O (1), Ar = lo, r = ro ~- loxl, y - -  loyl �9 E q u a t i o n  ( 5 )  t a k e s  t h e  f o r m  

d 'y ,  . A dy,  [1+ ( dy,'~[ 
d~---[ -~ d~l L t - f ~ x ,  / .I = O. (7)  

As the boundary conditions for Eq. (7), we use the requirement that the curve join 
smoothly with the face, i.e., 

dyl/dx~-+ 0 ~ x l -+  oo. (8) 

The solution of Eq. (7) under the conditions (8) is 

L 
Yl = • - -  arc s in [exp ( - -  A, Xl)]. 

A (9 )  

Under the condition of conjugation of (9), yl = yl(xl), with the inner wall of the sprayer, we 
take the positive sign. The coordinate of the conjugation point is yi(O) = ~/2A. 

Thus, for w0 ~ u0 we find that the turning of the liquid film will occur in the region of 
Ar ~ Ay in the vicinity of (y = 0, r = r0) along the surface (9). The scale of this region is 
defined as 

2 2 
Ar  = lo ~ rouo/wo. (10)  
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Later, using the estimates (6) and (I0), we shall carry out an asymptotic analysis of 
solutions of the Euler equations for w0/u0 § ~and A = 0(i). Since the quantity A is finite 
and the solution of the equations depends on it, it is a similarity parameter of this flow. 

Let us find the characteristic value of the transverse velocity component (normal to 
the surface) in the region of turning of the liquid film along a section of length lo. From 
the continuity equationwe can obtain v ~5~/t0 

One can imagine the following cases: i) 5<<It ; 2) 6~I0 ; 3) 6>>10. The last one will 
not be considered here, since at scales of ~ the turning region contracts to a corner point 
and the estimate for v proves to be wrong. Detachment of the liquid film from the surface 
is the most probable in this case. 

Let us consider the case of 8 ~ ~ . Ne introduce the coordinates 

S : loS1, 11=8ri 1 

and the asymptotic expressions 

/2 = /./OUl @ . . : ,  ~) = (~)/ lo)  UO01 -~- . . . .  ~'9 = WoW1 + . . . .  P = PoPa + . . . .  

hi = 1 + 5 (nt/Rlo) + . . . .  ha = ro + lorl + 5na cos  0 + . . . .  

( l i )  

(12) 

Here hz : i + n/R and h a  = r + n cos 9. 

We substitute Eqs. (11) and (12) into the Euler equations, written in orthogonal coordi- 
nates (s, n, ~ ) connected with the surface of the sprayer, and we carry out the limiting 
transitionS-+0, ~0-+0, 8/ro--+O, uo/wo-+O , and 8/I~-+0 As a result, we obtain (omitting the 
subscript) the system in the first approximation: 

Ou Ou w" dr Op Ou Ov = 0 ,  Op = 0 ,  u -F v ~  - -  . - = - - E u  ,. 
" 0--7 + O----~ 0---s as an ds a s  

O w  Ow (13) 
u ~ + v  = 0 .  

Os On 

Here Eu = p0/pu~. We note that a pressure gradient across the liquid layer is absent from 
the system of equations (13), and thus, there is no force capable of detaching the liquid 
from the surface. These equations are of the parabolic type and have the form of the equations 
of an inviscid boundary layer. 

Let us proceed to the case of 8~ l 0 �9 We assume that 1o--= a8 , where ~ = O(i). From this 
we obtain Uo/r.Vo = V ~ o .  

We introduce the Coordinates 

S = loS2, n :  8ns (14) 

and the asymptotic expansions 

u ~ UoU2 + . . . .  v = (5//o)UoV2 + . . . .  w = WoW2 + . . . .  P = PoP~ Jr- . . . .  

ht = 1 + ndaR~ § . . . . .  h3 = ro + 5 (czr~ + n~ c o s  O) § . . . .  
(15) 

After the substitution of Eqs. (14) and (15) into the Euler equations and the limiting' 
transition 8--+0, Io-+0, 6/ro--+O, Uo/~o--~O,6/l o = O(I), a = O(i), we obtain the following system of 
equations in the first approximation (the subscript is omitted): 

0 [( n)] 
. o. [dr n d ] 

1H- n laR  Os + V ~ n  + r l + n /aR  ~s  + -- (cosO)  = - - E u  Op �9 - g s '  

Or ~zU ~ u i Ov + v - -  - - t~w ~ c o s O : - a ~ E u  Op, , 
1 + n /aR  as On R (1 + n#zR) On 

u as -t- w 1 + an 

(16) 
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The boundary conditions for the systems of equations (13) and (16) have the usual form. 
They are the condition of nonpenetration at the solid surface and the assigned pressure dis- 
tribution over the outer boundary of the film. The initial conditions for these systems of 
equations must be sought using joining principles. As a result, we can obtain 

lira u i (%, hi) = lira uo (So, no), 
s i~--~  so~0 

lira w~ (s~, hi) = l imwo (So, tZo). 
Si~--~ solO 

Here i = 1 or 2, while the index 0 corresponds to the rotational--translational flow of the 
liquid film in the inner channel of the sprayer [i]. 

2. Let us consider the flow of the liquid film on the outer surface of a centrifugal 
sprayer (region III, Fig. i), assuming that the flow over the corner region II is attached. 
We shall assume that the characteristic linear size L of this surface and its radius of 
curvature R are of the same order of magnitude (Fig. 3). For a weightless liquid, the only 
force capable of curving the trajectory of motion of the liquid layer is a pressure drop 
between the wall (inner) streamline and the outer streamline, Ap = Pw -- P0- Here Pw is the 
pressure at the surface of the sprayer; p0 is the characteristic pressure at the outer 
boundary of the film. The centrifugal forces tending to detach the liquid film will be 
balanced by this pressure drop: 

R (17) 

Here w0 is the characteristicvelocity of the liquid layer. 

If the local pressure at the inner boundary of the filmdecreases to the saturation 
pressure of the vapor, the liquid will bubble up. Vapor bubbles appear and the liquid film 
"detaches" from the surface of the sprayer, We shall assume that Ap/p0 = O(i), and then 
from (17) we obtain an estimate of the radius of curvature R of the outer surface of a centri- 
fugal sprayer, 

R ,-, 61Eul, (18) 

where Eul = p0/0w~ is the Euler numer; its definition differs from that of Eu introduced 
earlier. 

From the relation (18) it follows that for radii of curvature of the outer surface of a 
sprayer of less than ~/Eul in order ofmagnitude, the liquid film detaches from this surface, 
while for radii of curvature of the surface greater than 6/Eul in order of magnitude, the 
flow will be attached, while the pressure drop across the stream will be small. The dimension- 
less complex ~ = (6/L)Eul, in addition to the Euler number Eul, the ratios ~/L and Ap/p0, and 
the saturation pressure of the liquid, is a similarity parameter of such flows. Later we 
shall seek asymptotic solutions of the Euler equations as ~/L § 0 and Eul +0 and for ~ = 0(i) 
and Ap/p0 = O(I). 

The Euler equations are written, as before, in orthogonal variables (s, n, ~) connected 
with the surface of the sprayer. 

The longitudinal size of the flow region III is L ~ Rand the transverse size is 6. In 
the general case L may alsobe far larger than R in the relation (18), in which case the 
pressure drop across the stream is small, in accordance with the estimate found. In the 
equations describing such flow, the terms containingpressure gradients will be negligibly 
small, since Eul<<l and L>>R. Such flows are characterized by the attached regime of flow 
of the liquid film over the surface. For practical use, it often becomes important to study 
the attached flow of a film in the presence of a transverse pressure gradient, i.e., the 
case of ~ = 0(i). 

Now let L = ~/Eul; we introduce the coordinates 

s : L s s ,  n : 6n3 ( 1 9 )  

and the asymptotic expansions 
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Fig. 3. Diagram of liquid flow in region III. 

Fig. 4. Outer surface of an"attached'! sprayer (the upper 
curves correspond to the presence of a flat face of width 
Ar = 0.I cm; for the lower curves, the flat face is ab- 
sent, Ar = 0.0): i) liquid flow rate m = 2; 2) 4 g/sec. 

u = WoU3 + . . . . .  v = wo Eul v3 + . . . .  

w = wows § . . . .  P = PoPs + . . . .  
(20) 

If we substitute Eqs, (19) and (20) into the Euler equations and carry out the limiting tran- 
sition 6/i-+0, EUl-+0, l = O(I); and &P/Po = 0(i), we can obtain the following system of equa- 
tions (the subscript 3 is omitted): 

O(ru) O(rv) _ 0 ,  Ou Ou w 2 dr  = 0 ,  
Os 4 O ~  u--~s + v On r cts 

+ w s cos O' 
Op 

�9 On 

Ow Ow dr  
' u--~-s+V----WUon ~s = 0 .  

(21) 

The system of equations (21) is parabolic and describes the flow of a thin liquid layer 
under the action of inertial and pressure forces. Equations of the type (21) are encountered 
in the theoryof a thin shock layer in the flow of an inviscid hypersonic stream over a blunt 
body [3, 4]. To obtainthe solutions of these equations, one must assign the boundary and 
initial conditions: nonpenetration at the surface over which the flow occurs and the dimension- 
less pressure distributionp0(s)at the free surface;:the initial data are obtained by joining 
the asymptotic expansions(l~) or(15) for the flow retion II and the asymptotic expansions 
(20) for the flow region III. Thus, as the initial data, we obtain the profiles u(n) and w(n), 

lim U8 (ss, ns) = lira Ui (s~, n0, 

lirn w8 (ss, ns) = lim w~ (%, ni) ,  
Ss-,0 $i-~ 

(22)  

where i = i or 2. 

It is convenient to solve the system of equations (21), with the indicated boundary and 
initial conditions (22), in Mises variables (s, ~), where ~ is the stream function. As a 
result, one can obtain the following solution: 

w = C(~)/r, u = ] / 2 D  ( 9 ) -  w ~, 

I (23) 

~ . [ ( ~ R r + w ~ c o s O / r u ) d ~  = A p .  
O 
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Here the functions C(~) and D(q) are found from the conditions (22). 

If the equation of the sprayer surface along with the liquid filmmoves is assigned, 
then the solutions (23) enable one to determine the quantity pw, the pressure at the surface 
of the sprayer. At those points where Pw proves to be less than the dimensionless pressure 
of saturated vapor of the liquid, the probability of detachment of the film from thesprayer 
surface is very high. 

3. The solutions (23) can be used to construct the outer surface of a centrifugal 
sprayer which is attached for a given regime. If the distribution Ap(s) is assigned and 
the initial profiles u(*) and w($) at the exit from the flow region II are found, then the 
outer surface of the sprayer can be calculated. 

Let us give an example of such a calculation. We assumethat the sprayer surface in 
region II is known and the flow is attached here. For this it is sufficient that the sprayer 
surface be smooth in this region and the longitudinal size be Le>>8 . Also let u(~) = const 
and w(~) = const. 

The initial data for the flow region III can be obtained without solving the problem for 
region II. For this it is sufficient to use the conservation laws operating in swirled 
streams [i, 2]. Because of the smallness of the film thickness, v<<u ~w, and we can write 

p(u 2 + w=) = 2Ap, w = C / r .  (24) 

The variation of the external pressure in the vicinity of the corner point (region !I) is 
small, from'which we obtain, for the characteristic velocity in region III, 

Wo = V ~ P ~ .  (25) 

Since u ~ w in regions I and II, the initial data for region IlZ take the form 

u = O, (w lwo)  = 1 mr ( r / r o )  = 1. 

Equation (24) in dimensionless variables is 

(26) 

us + =2 = 1; w = I/r. (27)  

t 

The parameter ~ as a function of the liquid flow rate m (g/see)in the sprayer is described 
by the relation 

k-1 = (PolPw~)(2~r~9~o/m) 2/3. 

Here P0 is the characteristic gas pressure at the outer boundary of the liquid film. 

Equations (23) canbe calculated easily for the initial conditions (26). 
of r = i, their solution has the form 

V2 (l - pol)(r - I) 3/2 + y = ~  .... 

~ v  V~ 
d---T = - 7  (1 - -Po l )  ( r -  1 ) I /2+  . . . .  

In the vicinity 

(28) 

Here Pw is the ratio of the pressure of saturated vapor of the liquid to the characteristic 
pressure P0. 

The solution (28) is valid in the vicinity of r = i; it shows that the radius of curva- 
ture of the stream in this region tends toward infinity, i.e., the surface of the sprayer in 
the vicinity of r = I must necessarily be flat. 

An example of a calculation of the outer surface of a sprayer with r = 0.3 cm is given 
in Fig. 4. In the calculations it was assumed that the pressure distribution at the outer 
boundary of the liquid film:depends on the angle of inclination of its surface to the axis 
of symmetry in accordance with sin 2 0, while P01 = 0.01 
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NOTATION 

y, axis of symmetry of the sprayer; r, distance from the axis of symmetry; 6, thick- 
ness of liquid film; s, coordinate measured along thesurface of the sprayer; n, coordinate 
measured along a normal to the sprayer surface; ~, azimuthal coordinate; u, v, w, corresponding 
components of the velocity vector; p, pressure; F, centrifugal force; R, radius of curvature 
of the sprayer surface; A E, element of the sprayer surface; 0, ang!e of inclination of the 
surface to the y axis; p, liquid density; Z, L, characteristic lengths; h, Lame coefficient; 
Eu, Euler number; A, ~, ~, similarity parameters; ~, stream function. 
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EFFECTIVE TRANSPORT COEFFICIENTS IN~ ADISPERSE MEDIUM WITH 

ELLIPSOIDAL INCLUSIONS 

Yu. A. Buevich,!A. Yu. Zubarev, 
and S. A. Haidanova 

UDC 536.24.01 

Expressions are obtained for the steady-state conductivity tensor for moderately 
concentratedheterogeneous materials with ellipsoidal inclusions. 

If the linear dimensionsof the mean temperature or concentration fields in a heterogene- 
ous medium (consisting of a ~homogeneousmatrix with discrete inclusions distributed in it) are 
significantly larger than the characteristic dimensions of the inclusions, then heat or mass 
transport is naturally describedin terms0fthe continuum approximation. In this case it 
is sufficient to introduce effecs thermal conductivities or diffusion coefficients for the 
medium as a whole [i, 2]. 

The determination ofthese effective coefficients fora mediumwith spherical inclusions 
has been considered ina number of papers, but the number of papers devoted to the analogous 
problem for a medium with nonspherical inclusions is quite small. A dilute dispersion of non- 
spherical inclusionswas considered in [3]. A moderately concentrated dispersion of spheroidal 
inclusions was studiedi n [4, 5] in the dipole approximation(where the contribution of each 
inclusion to the mean field is replaced hy that of a point dipole at the center of the given 
inclusion). In the present paper the general methods of [2] are used to analyze the proper- 
ties of aheterogeneous materialwith ellipsoidal inclusions. The spatial distribution of the 
ellipsoids is assumed to be random and their orientation is assumed to obey a given statistical 
distribution lawwhich is identicalforall points of space.~ Thenthe material is macro- 
scopically homogeneous, although itis not necessarily isotropic. Wenotethat this theory 
is important not only in. the description ofmaterials with inclusions, but also as a model 
for the analysis of transport processes in isotropic and an• polycrystalline media of 
more complicated structure [6, 7]. 

Statement of the Problem. In an anisotropic heterogeneous medium the relation between 
the mean heat flux and the gradient of the mean temperature has the form 

q .... ~V~, (1) 
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