HYDRODYNAMICS OF A CENTRIFUGAL SPRAYER

Yu. N. Ermak UDC 532.516

An asymptotic analysis is made of the flow of a f£ilm of an inviscid incompressible
liquid in a centrifugal sprayer under high heads. The conditions under which the
film turns through an angle ~r along the surface of the sprayer are determined.

The swirling of streams of liquids and gases is-widely:used in industry as an effective
‘means of intensifying heat- and mass—exchange processes.. A centrifugal sprayer is an example
of a technical device in which stream swirling is used [1, 2]. 1In such a device the swirled
stream usually turns through an angle /2, The case when a swirled high-head stream turmns
through an angle “m is studied below. The investigation is made under the following
assumptions. The liquid is inviscid, incompressible, and weightless, The thickness of the
liquid layer in the 1inner channel of the centrifugal sprayer is far less than its radius,
while the velocity along.the generating line of the channel is far lower. than the velocity
of rotation of the liquid.. The total. pressure of the liquid is far higher than the static
pressure in the surrounding space. 1In this case, the following characteristic regions of flow
can be distinguished (Fig. 1): region I (» > y > 0) of rotational—translational flow of the
liquid film in the inmer channel; region II, in which the liquid film turns through an angle
n/2 along. the surface of :the sprayer in the vicinity of (y = 0, r = ro); dn region III, lo-
cated on the outer surface, the liquid film turns through another angle /2, so that the
flow turns through a total angle -, - The conditions under which the flew of the liquid film
proves to be attached are studied in :the paper. - This is. important from a practical point of
view, since a detached film rapidly loses stability and is broken up by forces of surface
tension. . As a result: of the.loss of continuity of the liquid.film, the surface of the sprayer
is not protected from the adverse action of the external medium or overheating.

" The ability of a stream of liquid or gas to bend around a surface is called the Coanda
effect. Thus, a theory of the Coanda effect for a centrifugal sprayer is presented here,

1. We consider the rotational—translational :flow of a layer of an inviscid incompressi-
ble liquid aleng the inmer cylindrical channel, of radius ro, of a sprayer (Fig. 1). Let the
thickness of the liquid film be §< rg, while the velocity .component along the generating
Iine is up « wo, where wo is the rotational component of the velocity vector. In the cross
section y = 0, where y is the axis of symmetry of the sprayer, the film turns through an
angle /2. Obviously, such flow is not always possible. If the edge is sharp, the liquid
film detaches from the surface and breaks up rather rapidly. Let us try to estimate the
characteristic size and shape of the sprayer surface in the vicinity of y = 0 and r = ro (Fig.
2) providing for the attached turning of the liquid film through an angle “r/2. If we neglect
the variation of the film thickness & as it spreads out, then the following forces act on an
element AlSA¢ of this film with a mass m = AlfAgp :

F,sin®+ F,+ AprAgAl = 0. (1)

Here A@ is an element of azimuth angle; Ap is the pressure difference between the outer and
inner. surfaces of the liquid; F1 and F, are the centrifugal forces determined by the rotational
and translational motion of the liquid.. We shall neglect the term allowing for the pressure
difference Ap, since this force promotes the pressing of the film against the surface vy = y(r)
along which it moves, and the resulting estimate will be majorant for the attached surface

of the sprayer.

The values of the centrifugal force depend on the rotational motion,

Fy = mwir, (2)
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Fig. 2

Fig., 1., Diagram of liquid flow in a centrifugal
sprayer.

Fig. 2. Diagram of liquid flow in region II.
and the longitudinal velocity,
F, ~ mudjR. (3)

In accordance with the definition of the radius of curvature R of the surface y{(r).

1 dzy B dy 27-—-3/2
— T —————— 1 . .
R idrz[+(d,>] %)
From Eqs. (1)-(4), we get
2 ' 21—1
wy dy s d?y dy) B
rodr L drt [} + ( dr =0 (5)

We require that the two terms of Eq. (5) be of the same order. Then we obtain
Ay~ Ar, rocrg+Ar, wy  u/V Arlrg. (6)

We designate A = wiAr/ujro=0(l), Ar=1, r=r,+ lyx;, ¥y =Ly, - Equation (5) takes the form

Py 4 du {1+( d )2}:0‘

dx? dx, dx (7)
As the boundary conditions for Eq. (7), we use the requirement that the curve join
smoothly with the face, i.e.,
y—>0 as  x;— oo,
dyde, -0 a8 x - oo, (8)
The solution of Eg. (7) under the conditions (8) is
=+ — e sinfexp (— Axy)]. 9)

Under the condition of conjugation of (9), yi1 = yi(x1), with the inner wall of the sprayer, we
take the positive sign. The coordinate of “the conjugation point is y;(0) = w/24A.

Thus, for wo »ug we find that the turning of the liquid £ilm will occur in the region of
Ar & Ay in the vicinity of (y = 0, r = ro) along the surface (9). The scale of this region is
defined as

Ar = Iy = roudjwd. (10)
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Later, using the estimates (6) and (10), we shall carry out an asymptotic analysis of
solutions of the Euler equations for wo/ug »~and A = 0(l). Since the quantity A is finite
and the solution of the equations depends on it, it is a similarity parameter of this flow.

Let us find the characteristic value of the transverse velocity component (normal to
the surface) in the region of turning of the liquid film along a section of length l.. From
the continuity equation we can obtain v ~8uy/ly -

One can imagine the following cases: 1) 6k ; 2) 8§~/ ; 3) &>l . The last one will
not be considered here, since at scales of § the turning region contracts to a corner point
and the estimate for v proves to be wrong. Detachment of the liquid film from the surface
is the most probable in this case.

Let us consider the case of 6K, . We introduce the coordinates

§ = losl, n= 5711 (11)
and the asymptotic expressions
U=tgth+ ..., V=8/l)ug0y + ..., W=waw + ..., p=pp1+ ...,
hy=14+8(nyRlYy+ ..., hy=ro+ lgr;+ Onycos0+ ... . (12)

llere h; = 1 + n/R and h; =1 + n-cos 8.

We substitute Egs. (11) and (12) into the Euler equations, written in orthogonal coordi-
nates (s, n, ¢ ) connected with the surface of the sprayer, and we carry out the limiting
transition 8—-0, {0, §/rg—0, uy/we—>0 , and &/ly>0 . As a result, we obtain (omitting the
subscript) the system in the first approximation:

_@u_+_ai;0’ op ~0, u ou +vau W dr Eu 6pr
0s on on Os on ds ds (13)
dw dw
y—=4+ov—=20
0s - on

Here Eu = pg/pu%. We note that a pressure gradient across the liquid layer is absent from

the system of equations (13), and thus, there is no force capable of detaching the liquid

from the surface. These equations are of the parabolic type and have the form of the equations
of an inviscid boundary layer.

Let us proceed to the case of § ~1[, . We assume that l,==ad , where o = 0(1). From this
we obtain yyw, =V adjr,.

We introduce the coordinates
S = lySy, 1= 0n, (14)
and the asymptotic expansions

U == Uy + ..., v:(&/lo)u,,vz—i—..., W=WWs+ ..., p=poPa—t...,

15
hi=1-4nyfaRy + ..., hg=rg+ 8{ar, +nycos0) +... . (13

After the substitution of Egs. (14) and (15) into the Euler equations and the limiting
transition 60, [;—0, 8/ry—0, uy/we—0,8/l, =0(1), o = 0(1), we obtain the following system of
equations in the first approximatien (the subscript is omitted):

ou 0 n
G 14+ — == 0,
fas+6n [( + ocR)vJ

u ou ou uvy w? dr | n d op
—_— et | — e —(c0s 0) | = — Eu—,
14 n/aR 0s an aR 14+ njaR | ds o ds Os
R 2
___i._l_@_ UE?—————ELL—-———G.MPCOSG:——-GZEU—O‘E', (]_6)
1—1—n/qR Os on R(1 4 n/aR) on
ow n dw
hubadl 14—} —=0
y as +w( + ocR) on
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The boundary conditions for the systems of equations (13) and (16) have the usual form.
They are the condition of ponpenetration at the solid surface and the assigned pressure dis-
tribution over the outer boundary of the film. The initial conditioms for these systems of
equations must be sought using joining principles. As a result, we can obtain

lim u;(s;, n5) = limug(s,, 7o),

§;>—0 sp—>0

lim w; (s, ;) = limwq (o, #o)-

§;—o . 50

Here i = 1 or 2, while the index 0 corresponds to the rotational—translational flow of the
liquid film in the inner channel of the sprayer [1].

2. Let us consider the flow of the liquid film on the outer surface of a centrifugal
sprayer (region III, Fig. 1), assuming that the flow over the corner region II is attached.
We shall assume that the characteristic linear size L of this surface and its radius of
curvature R are of the same order of magnitude (Fig. 3):. For a weightless liquid, the only
force capable of curving the trajectory of motion of the liquid layer is a pressure drop
between the wall (inner) streamline and the outer streamline, Ap = py — po. Here py is the
pressure at the surface of the sprayer; py is the characteristic pressure at the outer
boundary of the film. The centrifugal forces tending to detach the liquid film will be
balanced by this pressure drop:

PwEAZ | ApAS.
an

Here wg is the characteristic velocity of the liquid layer.

If the local pressure at the inner boundary of the film decreases to the saturation
pressure of the vapor, the liquid will bubble up. Vapor bubbles appear and the liquid film
"detaches'" from the surface of the sprayer. We shall assume that Ap/po = 0(1), and then
from (17) we obtain an estimate of the radius of curvature R of the outer surface of a centri-
fugal sprayer,

R o 8/Eu,, (18)

where Eu; = po/pw% is the Euler numer; its definition differs from that of Eu introduced
earlier.

From the relation (18) it follows that for radii of curvature of the outer surface of a
sprayer of less than &/Eu; in order of magnitude, the liquid film detaches from this surface,
while for radii of curvature of the surface greater than 6/Eu; in order of magnitude, the
flow will be attached, while the pressure drop across the stream will be small. The dimension-
less complex A = (§/L)Eui, in addition to the Euler number Euj, the ratios &/L and Ap/pos, and
the saturation pressure of the liquid, is a similarity parameter of such flows. Later we
shall seek asymptotic solutions of the Euler equations as &/L + 0 and Eu;+0 and for A = 0(1)
and Ap/pp = 0(1).

The Euler equations are written, as before, in orthogonal variables (s, n, ¢ ) connected
with the surface of the sprayer.

The longitudinal size of the flow region III is L A R and the transverse size is §. In
the general case L may also be far larger than R in the relation (18), in which case the
pressure drop across the stream is small, in accordance with the estimate found. In the
equations describing such flow, the terms containing pressure gradients will be negligibly
small, since Euy €1 and L:>»R. Such flows are characterized by the attached regime of flow
of the liquid film over the surface. For practical use, it often becomes important to study
the attached flow of a film in the presence of a transverse pressure gradient, i.e., the
case of A = 0(1).

Now let L = §/Eu;; we introduce the coordinates

§=Lsy, n=dn, (19)

and the asymptotic expansions
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Fig, 3. Diagram of liquid flow in region III.

Fig. &. Outer surface of an Mattached" sprayer (the upper
curves- correspond to. the presence of a flat face of width
Ar = 0.1 em; for the lower curves, the flat face is ab-
sent, Ar = 0,0): 1) liquid flow rate m = 2; 2) 4 g/sec.

U=wys+ ..., v=wEmu;+ ...,
w=w0w3+...,p=p0p3+.... (20)

If we substitute Egs. .(19) .and (20) into the Euler equations and carry out the limiting tran-

sition §/L—0, Eu;—~0, A=0(1); and Ap/po = 0(1), we can obtain the following system of equa-
tions (the subscript 3 is omitted): B

‘ 2
o) | 0o o 0w 6w @ dr o
Js on ds on r ds
fu? ' ap Oow Ow dr (21)
AM—+wcos)|=—"—, 4 —+v——wu—-=0.
(R + , ) on ds + on ds

The system of equations (21) is parabolic and describes the flow of a thin liquid layer
under the action of inertial and pressure forces. Equations of the type (21) are encountered
in the theory of a thin shock layer in the flow of an inviscid hypersonic stream over a blunt
body [3, 4]. To obtain the solutions of these equations, one must assign the boundary and
initial conditions: nonpenetration at the surface over which the flow occurs and the dimension-
less pressure distribution. p¢(s) at the free surface; the initial data are obtained by joining
the asymptotic expansions. (12) or (15) for the flow retion II and the asymptotic expansions
(20) for the flow region III. Thus, as the initial data, we obtain the profiles u(n) and w(n),

1im #45 (S3, 115) = limu; (3, ny),
si-soo

53—

. o (22)
lim w; (s3, ng) = limw; (s;, ny),
s3>0 ]

where 1 = 1 or 2.

It is convenient to solve the system of equations (21), with the indicated boundary and
initial conditions .(22), in Mises wvariables (s, y), where ¢ is the stream function. As a
result, one can obtain the following solution:

w=C)r, u=V2DW)—u?
1 (23)
A { (@/Rr 4w cos Ojruy dp = Ap.

0
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Here the functions C(¥) and D(y) are found from the conditions (22).

If the equation of the sprayer surface along with the liquid film moves is assigned,
then the solutions (23) enable one to determine the quantity pw, the pressure at the surface
of the sprayer. At those points where py proves to be less than the dimensionless pressure
of saturated vapor of the liquid, the probability of detachment of the film from the sprayer
surface is very high.

3. The solutions (23) can be used to construct the outer surface of a centrifugal
sprayer which is attached for a given regime. If the distribution Ap(s) is assigned and
the initial profiles u(y) and w(y¥) at the exit from the flow region II are found, then the
outer surface of the sprayer can be calculated.

Let us give an example of such a calculation. We assume that the sprayer surface in
region II is known and the flow is attached here. For this it is sufficient that the sprayer
surface be smooth in this region and the longitudinal size be [t>»>8 . Also let u(y) = comnst
and w(y) = const.

The initial data for the flow region III can be obtained without solving the problem for
region II. For this it is sufficient to use the conservation laws operating in swirled
streams {1, 2]. Because of the smallness of the film thickness, v<€ u ~w, and we can write

p (2 + w?) = 2Ap, w =CJr. (24)

The variation of the external pressure in the vicinity of the corner point (region II) is
small, from which we obtain, for the characteristic velocity in region III,

@, =V 2Apjp. (25)

Since u € w in regions I and II, the initial data for region III take the form

=0, (W) =1for (rre) = 1. (26)
Equation (24) in dimensionless variables is
ww=1;, w=1r. 27
The parameter A as .a function of the liquid flow rate ﬁ'(g/sec)<in the sprayer is described
by the relation

At = (polpwd)@nripwyin) /°

Here pyp is the characteristic gas pressure at the outer boundary of the liquid film.

Equations (23) can be calculated easily for the initial conditions (26). In the vicinity
of r = 1, their solution has the form

y= YL (= e — 1P

dy 2
_d? == V —=— (1 — poy) (r — 1)”24'

(28)

Here pm 1is the ratio of the pressure of saturated vapor of the liquid to the characteristic
pressure pyp.

The solution (28) is valid in the vicinity of r = 1; it shows that the radius of curva-
ture of the stream in this region tends toward infinity, i.e., the surface of the sprayer in
the vicinity of r = 1 must necessarily be flat.

An example of a calculation of the outer surface of a sprayer with r = 0.3 cm is given
in Fig. 4. In the calculations it was assumed that the pressure distribution at the outer
boundary of the liquid film depends on the angle of inclination of its surface to the axis
of symmetry in accordance with sin? 0, while po; = 0.0L
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NOTATION

vy, axis of symmetry of the sprayer; r, distance from the axis of symmetry; &, thick-
ness of liquid film; s, coordinate measured along the surface of the sprayer; n, coordinate
measured along a.normal to the sprayer surface; ¢, azimuthal coordinate; u, v, w, corresponding
components of the velocity vector; p, pressure; F, centrifugal force; R, radius of curvature
of the sprayer surface; AL, element of the sprayer surface; 6,. angle of. inclination of the
surface to the y axis; p, liquid density; 7, L, characteristic lengths; h, Lame coefficient;
Fu, BEuler number; A, o, A, similarity parameters; y, stream function.
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EFFECTIVE TRANSPORT COEFFICIENTS IN: A DISPERSE MEDIUM WITH
ELLIPSOIDAL INCLUSIONS

Yu. A. Buevich, A. Yu. Zubarev, UDC 536.24.01
and S. A. Haidanova

Expressions are obtained for the steady-state conductivity tensor for moderately
concentrated heterogeneous materials with ellipsoidal inclusions.

If the linear dimensions .of the mean temperature: or concentration fields in a heterogene-
ous medium (consisting of a homogeneous matrix with discrete inclusions distributed in it) are
significantly larger than the characteristic dimensions of the inclusions, then heat or mass
transport is naturally described in terms of the continuum approximation. ' In this case it
is sufficient to introduce effective thermal conductivities or diffusion coefficients for the
medium -as -a'whole [1, 2].

The determination of -these effective coefficients for a medium with spherical inclusions
‘has been considered in 'a number of papers, but the number of papers devoted to the analogous
problem for a medium with nonspherical inclusions is quite small. A dilute dispersion of non-
spherical inclusions was considered in [3]. A moderately concentrated dispersion of spheroidal
inclusions was.studied in [4, 5] in the dipole approximation .(where the contribution of each
inclusion to the mean field is replaced by that of a point dipole at the center of the given
inclusion). In the present paper the general methods of [2] are used to analyze the proper-
ties of a heterogeneous material with ellipsoidal inclusions. The spatial distribution of the
ellipsoids is assumed to be random and their orientation is assumed to obey a given statistical
distribution law which is identical for.all points of space. Then -the material is macro-
scopically homogeneous, although it is not neceéssarily isotropic. We note that this theory
is important not only in the deseription of materials with inclusions, but also as a model
for the analysis of transport processes in isotropic and anlsotroplc polycrystalline media of
more complicatedstructure [6, 7].

Statement of the Problem. In an anisotropic heterogeneous medium the relation between
the mean heat flux and the gradient of the mean temperature has the form

q=—hyr, @
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